Vibrio cholerae O139 requires neither capsule nor LPS O side chain to grow inside Acanthamoeba castellanii
نویسندگان
چکیده
Vibrio cholerae, the causative agent of cholera, has the ability to grow and survive in the aquatic free-living amoeba Acanthamoeba castellanii. The aim of the present study was to examine the ability of the clinical isolate V. cholerae O139 MO10 to grow in A. castellanii and to determine the effect of the bacterial capsule and LPS O side chain on intracellular growth. Results from co-cultivation, viable counts, a gentamicin assay, electron microscopy and statistical analysis showed that the association of V. cholerae O139 MO10 with A. castellanii did not inhibit growth of the amoeba, and enhanced growth and survival of V. cholerae O139 MO10 occurred. The wild-type V. cholerae O139 MO10 and a capsule mutant or capsule/LPS double mutant grew inside A. castellanii. Neither the capsule nor the LPS O side chain of V. cholerae O139 was found to play an important role in the interaction with A. castellanii, disclosing the ability of V. cholerae to multiply and survive inside A. castellanii, as well as the role of A. castellanii as an environmental host for V. cholerae.
منابع مشابه
Role of Vibrio cholerae O139 surface polysaccharides in intestinal colonization.
Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogroup has been investigated intensively, and it has been found that its pathogenicity is comparable to that of O1 El Tor strains. O139 isolates express a thin capsule, composed of a polymer of repeating units structurally identical to the lipopolysaccharide (LPS) O side chain. In this study, we investig...
متن کاملLack of Outer Membrane Protein A Enhances the Release of Outer Membrane Vesicles and Survival of Vibrio cholerae and Suppresses Viability of Acanthamoeba castellanii
Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer memb...
متن کاملTemperature Depended Role of Shigella flexneri Invasion Plasmid on the Interaction with Acanthamoeba castellanii
Shigella flexneri is a Gram-negative bacterium causing the diarrhoeal disease shigellosis in humans. The virulence genes required for invasion are clustered on a large 220 kb plasmid encoding type three secretion system (TTSS) apparatus and virulence factors such as adhesions and invasion plasmid antigens (Ipa). The bacterium is transmitted by contaminated food, water, or from person to person....
متن کاملInteraction between waterborne pathogenic bacteria and Acanthamoeba castellanii
Waterborne bacteria cause global public health problems. Francisella tularensis causes tularemia, which is a fatal disease in humans. Pseudomonas aeruginosa is an opportunistic and nosocomial pathogen of humans. Vibrio cholerae O1 and V. cholerae O139 infect only humans and cause epidemic and pandemic cholera. The principal natural reservoirs of these pathogens are largely unknown. To find thei...
متن کاملInteraction between Vibrio mimicus and Acanthamoeba castellanii
Vibrio mimicus is a Gram-negative bacterium, which causes gastroenteritis and is closely related to Vibrio cholerae. The environmental reservoir of this bacterium is far from defined. Acanthamoeba as well as Vibrio species are found in diverse aquatic environments. The present study was aimed to investigate the ability of A. castellanii to host V. mimicus, the role of bacterial protease on inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 58 شماره
صفحات -
تاریخ انتشار 2009